Differential effects of proinflammatory cytokines on cell death and ER stress in insulin-secreting INS1E cells and the involvement of nitric oxide.
نویسندگان
چکیده
Proinflammatory cytokines produced by immune cells destroy pancreatic beta cells in type 1 diabetes. The aim of this study was to investigate the cytokine network and its effects in insulin-secreting cells. INS1E cells were exposed to different combinations of proinflammatory cytokines. Cytokine toxicity was estimated by MTT assay and caspase activation measurements. The NFκB-iNOS pathway was analyzed by a SEAP reporter gene assay, Western-blotting and nitrite measurements. Gene expression analyses of ER stress markers, Chop and Bip, were performed by real-time RT-PCR. Cytokines tested in this study, namely IL-1β, TNFα and IFNγ, had deleterious effects on beta cell viability. The most potent toxicity exhibited IL-1β and its combinations with other cytokines. The toxic effects of IL-1β towards cell viability, caspase activation and iNOS activity were dependent on nitric oxide and abolished by an iNOS blocker. IL-1β was the strongest inducer of the NFκB activation. An iNOS blocker inhibited IL-1β-mediated NFκB activation in the first, initial phase of cytokine action, but did not affect significantly NFκB activation after prolonged incubation. Interestingly iNOS protein expression was induced predominantly by IL-1β and decreased in the presence of an iNOS blocker in the case of a short time exposure. The changes in the expression of ER stress markers were also almost exclusively dependent on the IL-1β presence and counteracted by iNOS blockade. Thus cytokine-induced beta cell death is primarily IL-1β mediated with a NO-independent enhancement by TNFα and IFNγ. The deleterious effects on cell viability and function are crucially dependent on IL-1β-induced nitric oxide formation.
منابع مشابه
Inhibition of Nitric Oxide Production and Proinflammatory Cytokines by Several Medicinal Plants
Background: A number of medicinal plants have been used to treat various immunological diseases. Nitric oxide (NO) has an important regulatory role in the various types of inflammatory processes. Objective: To investigate the NO modulatory activity of the extracts of several medicinal plants native to Iran including Dracocephalum kotschyi, Linum persicum, Dionysia termeana, Salvia mirzayanii, F...
متن کاملP 113: Effect of Curcumin on Microglial Cells in MS
Multiple sclerosis (MS) is the most common autoimmune disease, especially among young’s. Neuroinflammation results from inflammation in CNS and it may cause different disorders and diseases .It is also known as a detriment in multiple sclerosis. In fact, it causes problems and symptoms in MS. In MS the self-immune cells attack the myelin of neurons, it maybe the nerve in brain or spinal c...
متن کاملEXPRESSION OF INDUCIBLE NITRIC OXIDE SYNTHASE GENE (iNOS) STIMULATED BY HYDROGEN PEROXIDE IN HUMAN ENDOTHELIAL CELLS
Inducible nitric oxide synthase (iNOS) gene expresses a calcium calmudolin-independent enzyme which can catalyse NO production from L-arginine. The induction of iNOS activity has been demonstrated in a wide variety of cell types under stimulation with cytokines and lipopoly saccharide (LPS). Previous studies indicated that all nitric oxide synthases (NOS) activated in human umbilical vein endot...
متن کاملEffects of the novel mitochondrial protein mimitin in insulin-secreting cells.
Mimitin, a novel mitochondrial protein, has been shown to act as a molecular chaperone for the mitochondrial complex I and to regulate ATP synthesis. During Type 1 diabetes development, pro-inflammatory cytokines induce mitochondrial damage in pancreatic β-cells, inhibit ATP synthesis and reduce glucose-induced insulin secretion. Mimitin was expressed in rat pancreatic islets including β-cells ...
متن کاملEffects of Some Lamiaceae Species on NO Production and Cell Injury in Hydrogen Peroxide-induced Stress
Nitric oxide (NO) is a key mediator that plays an important role in pathogenesis of various chronic diseases like Alzheimer’s disease and Parkinson’s disease. Additionally, there is a great attitude for finding natural compounds, which could control and inhibit NO production in pathological conditions. Therefore, we were encouraged to investigate the effects of some Lamiaceae species on NO prod...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cytokine
دوره 55 2 شماره
صفحات -
تاریخ انتشار 2011